例子3 结果可视化
作者:
莫烦
2016-11-03
编辑:
学习资料:
matplotlib 可视化 ¶
构建图形,用散点图描述真实数据之间的关系。
(注意:plt.ion()
用于连续显示。)
# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()#本次运行请注释,全局运行不要注释
plt.show()
散点图的结果为:
接下来,我们来显示预测数据。
每隔50次训练刷新一次图形,用红色、宽度为5的线来显示我们的预测数据和输入之间的关系,并暂停0.1s。
for i in range(1000):
# training
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# to visualize the result and improvement
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
# plot the prediction
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
plt.pause(0.1)
最后,机器学习的结果为:
降低知识传递的门槛
莫烦很常从互联网上学习知识,开源分享的人是我学习的榜样。 他们的行为也改变了我对教育的态度: 降低知识传递的门槛。 免费 奉献我的所学正是受这种态度的影响。 通过 【赞助莫烦】 能让我感到认同,我也更有理由坚持下去。
想当算法工程师拿高薪?转行AI无门道?莫烦也想祝你一臂之力,市面上机构繁杂, 经过莫烦的筛选,七月在线脱颖而出, 莫烦和他们合作,独家提供大额 【培训优惠券】, 让你更有机会接触丰富的教学资源、培训辅导体验, 祝你找/换工作/学习顺利~