切换视频源:

Saver 保存读取

作者: 莫烦 编辑: 莫烦 2016-11-03

学习资料:

我们搭建好了一个神经网络, 训练好了, 肯定也想保存起来, 用于再次加载. 那今天我们就来说说怎样用 Tensorflow 中的 saver 保存和加载吧.

保存

import所需的模块, 然后建立神经网络当中的 Wb, 并初始化变量.

import tensorflow as tf
import numpy as np


<h2 class="tut-h2-pad" id="Save to file">Save to file
  <a href="https://mofanpy.com/tutorials/machine-learning/tensorflow/save#Save to file" class="headerlink" title="Permalink to this headline">¶</a>
</h2>

# remember to define the same dtype and shape when restore
W = tf.Variable([[1,2,3],[3,4,5]], dtype=tf.float32, name='weights')
b = tf.Variable([[1,2,3]], dtype=tf.float32, name='biases')

# init= tf.initialize_all_variables() # tf 马上就要废弃这种写法
# 替换成下面的写法:
init = tf.global_variables_initializer()

保存时, 首先要建立一个 tf.train.Saver() 用来保存, 提取变量. 再创建一个名为my_net的文件夹, 用这个 saver 来保存变量到这个目录 "my_net/save_net.ckpt".

saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(init)
    save_path = saver.save(sess, "my_net/save_net.ckpt")
    print("Save to path: ", save_path)

"""    
Save to path:  my_net/save_net.ckpt
"""

提取

提取时, 先建立零时的Wb容器. 找到文件目录, 并用saver.restore()我们放在这个目录的变量.

# 先建立 W, b 的容器
W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.float32, name="weights")
b = tf.Variable(np.arange(3).reshape((1, 3)), dtype=tf.float32, name="biases")

# 这里不需要初始化步骤 init= tf.initialize_all_variables()

saver = tf.train.Saver()
with tf.Session() as sess:
    # 提取变量
    saver.restore(sess, "my_net/save_net.ckpt")
    print("weights:", sess.run(W))
    print("biases:", sess.run(b))

"""
weights: [[ 1.  2.  3.]
          [ 3.  4.  5.]]
biases: [[ 1.  2.  3.]]
"""

降低知识传递的门槛

莫烦很常从互联网上学习知识,开源分享的人是我学习的榜样。 他们的行为也改变了我对教育的态度: 降低知识传递的门槛免费 奉献我的所学正是受这种态度的影响。 通过 【赞助莫烦】 能让我感到认同,我也更有理由坚持下去。

    Tensorflow