切换视频源:

RNN LSTM (回归例子可视化)

作者: 莫烦 编辑: 莫烦 2016-11-03

学习资料:

接着上一节的例子继续讲解. 这次, 我们会要可视化整个学习的结果.

matplotlib 可视化

使用 Matplotlib 模块来进行可视化过程, 在建立好 model 以后, 设置 plt.ion() 使 plt.show()可以连续显示.

model = LSTMRNN(TIME_STEPS, INPUT_SIZE, OUTPUT_SIZE, CELL_SIZE, BATCH_SIZE)
sess = tf.Session()
# sess.run(tf.initialize_all_variables()) # tf 马上就要废弃这种写法
# 替换成下面的写法:
sess.run(tf.global_variables_initializer())
plt.ion()   # 设置连续 plot
plt.show()

然后在 sess.run() 后面加上plt.draw()的步骤.

_, cost, state, pred = sess.run(
            [model.train_op, model.cost, model.cell_final_state, model.pred],
            feed_dict=feed_dict)
# plotting
plt.plot(xs[0, :], res[0].flatten(), 'r', xs[0, :], pred.flatten()[:TIME_STEPS], 'b--')
plt.ylim((-1.2, 1.2))
plt.draw()
plt.pause(0.3)  # 每 0.3 s 刷新一次

最后的结果显示为:

5_10_1.png

降低知识传递的门槛

莫烦很常从互联网上学习知识,开源分享的人是我学习的榜样。 他们的行为也改变了我对教育的态度: 降低知识传递的门槛免费 奉献我的所学正是受这种态度的影响。 通过 【赞助莫烦】 能让我感到认同,我也更有理由坚持下去。

想当算法工程师拿高薪?转行AI无门道?莫烦也想祝你一臂之力,市面上机构繁杂, 经过莫烦的筛选,七月在线脱颖而出, 莫烦和他们合作,独家提供大额 【培训优惠券】, 让你更有机会接触丰富的教学资源、培训辅导体验, 祝你找/换工作/学习顺利~


    Tensorflow