RNN LSTM (回归例子可视化)
作者:
莫烦
2016-11-03
编辑:
学习资料:
- 相关代码
- 为 TF 2017 打造的新版可视化教学代码
- 机器学习-简介系列 什么是RNN
- 机器学习-简介系列 什么是LSTM RNN
接着上一节的例子继续讲解. 这次, 我们会要可视化整个学习的结果.
matplotlib 可视化 ¶
使用 Matplotlib 模块来进行可视化过程, 在建立好 model
以后, 设置 plt.ion()
使 plt.show()
可以连续显示.
model = LSTMRNN(TIME_STEPS, INPUT_SIZE, OUTPUT_SIZE, CELL_SIZE, BATCH_SIZE)
sess = tf.Session()
# sess.run(tf.initialize_all_variables()) # tf 马上就要废弃这种写法
# 替换成下面的写法:
sess.run(tf.global_variables_initializer())
plt.ion() # 设置连续 plot
plt.show()
然后在 sess.run()
后面加上plt.draw()
的步骤.
_, cost, state, pred = sess.run(
[model.train_op, model.cost, model.cell_final_state, model.pred],
feed_dict=feed_dict)
# plotting
plt.plot(xs[0, :], res[0].flatten(), 'r', xs[0, :], pred.flatten()[:TIME_STEPS], 'b--')
plt.ylim((-1.2, 1.2))
plt.draw()
plt.pause(0.3) # 每 0.3 s 刷新一次
最后的结果显示为:
降低知识传递的门槛
莫烦很常从互联网上学习知识,开源分享的人是我学习的榜样。 他们的行为也改变了我对教育的态度: 降低知识传递的门槛。 免费 奉献我的所学正是受这种态度的影响。 通过 【赞助莫烦】 能让我感到认同,我也更有理由坚持下去。
想当算法工程师拿高薪?转行AI无门道?莫烦也想祝你一臂之力,市面上机构繁杂, 经过莫烦的筛选,七月在线脱颖而出, 莫烦和他们合作,独家提供大额 【培训优惠券】, 让你更有机会接触丰富的教学资源、培训辅导体验, 祝你找/换工作/学习顺利~