选择学习方法
切换视频源:

选择学习方法

作者: Alice 编辑: 莫烦 发布于: 2016-01-01

学习资料:

看图选方法

安装完 Sklearn 后,不要直接去用,先了解一下都有什么模型方法,然后选择适当的方法,来达到你的目标。

Sklearn 官网提供了一个流程图, 蓝色圆圈内是判断条件,绿色方框内是可以选择的算法:

2_1_1.png

从 START 开始,首先看数据的样本是否 >50,小于则需要收集更多的数据。

由图中,可以看到算法有四类,分类,回归,聚类,降维

其中 分类和回归是监督式学习,即每个数据对应一个 label。 聚类 是非监督式学习,即没有 label。 另外一类是 降维,当数据集有很多很多属性的时候,可以通过 降维 算法把属性归纳起来。例如 20 个属性只变成 2 个,注意,这不是挑出 2 个,而是压缩成为 2 个,它们集合了 20 个属性的所有特征,相当于把重要的信息提取的更好,不重要的信息就不要了。

然后看问题属于哪一类问题,是分类还是回归,还是聚类,就选择相应的算法。 当然还要考虑数据的大小,例如 100K 是一个阈值。

可以发现有些方法是既可以作为分类,也可以作为回归,例如 SGD


降低知识传递的门槛

莫烦经常从互联网上学习知识,开源分享的人是我学习的榜样。 他们的行为也改变了我对教育的态度: 降低知识传递的门槛免费 奉献我的所学正是受这种态度的影响。 【支持莫烦】 能让我感到认同,我也更有理由坚持下去。

我组建了微信群,欢迎大家加入,交流经验,提出问题,互相帮持。 扫码后,请一定备注"莫烦",否则我不会同意你的入群申请。

wechat

    SciKit-Learn