Numpy array 合并 - Numpy & Pandas 数据处理 | 莫烦Python
切换视频源:

Numpy array 合并

作者: Sincejuly 编辑: 莫烦 2016-11-03

np.vstack()

对于一个array的合并,我们可以想到按行、按列等多种方式进行合并。首先先看一个例子:

vertical stack本身属于一种上下合并,即对括号中的两个整体进行对应操作。此时我们对组合而成的矩阵进行属性探究:

np.hstack()

利用shape函数可以让我们很容易地知道AC的属性,从打印出的结果来看,A仅仅是一个拥有3项元素的数组(数列),而合并后得到的C是一个2行3列的矩阵。

介绍完了上下合并,我们来说说左右合并:

通过打印出的结果可以看出:D本身来源于AB两个数列的左右合并,而且新生成的D本身也是一个含有6项元素的序列。

np.newaxis()

说完了array的合并,我们稍稍提及一下前一节中转置操作,如果面对如同前文所述的A序列, 转置操作便很有可能无法对其进行转置(因为A并不是矩阵的属性),此时就需要我们借助其他的函数操作进行转置:

此时我们便将具有3个元素的array转换为了1行3列以及3行1列的矩阵了。

结合着上面的知识,我们把它综合起来:

np.concatenate()

当你的合并操作需要针对多个矩阵或序列时,借助concatenate函数可能会让你使用起来比前述的函数更加方便:

axis参数很好的控制了矩阵的纵向或是横向打印,相比较vstackhstack函数显得更加方便。


降低知识传递的门槛

莫烦很常从互联网上学习知识,开源分享的人是我学习的榜样。 他们的行为也改变了我对教育的态度: 降低知识传递的门槛免费 奉献我的所学正是受这种态度的影响。 通过 【赞助莫烦】 能让我感到认同,我也更有理由坚持下去。