Numpy array 合并
作者: 莫烦 发布于: 2016-01-01
编辑: np.vstack()¶
对于一个array
的合并,我们可以想到按行、按列等多种方式进行合并。首先先看一个例子:
vertical stack
本身属于一种上下合并,即对括号中的两个整体进行对应操作。此时我们对组合而成的矩阵进行属性探究:
np.hstack()¶
利用shape
函数可以让我们很容易地知道A
和C
的属性,从打印出的结果来看,A
仅仅是一个拥有3项元素的数组(数列),而合并后得到的C
是一个2行3列的矩阵。
介绍完了上下合并,我们来说说左右合并:
通过打印出的结果可以看出:D
本身来源于A
,B
两个数列的左右合并,而且新生成的D
本身也是一个含有6项元素的序列。
np.newaxis()¶
说完了array
的合并,我们稍稍提及一下前一节中转置操作,如果面对如同前文所述的A
序列, 转置操作便很有可能无法对其进行转置(因为A
并不是矩阵的属性),此时就需要我们借助其他的函数操作进行转置:
此时我们便将具有3个元素的array
转换为了1行3列以及3行1列的矩阵了。
结合着上面的知识,我们把它综合起来:
np.concatenate()¶
当你的合并操作需要针对多个矩阵或序列时,借助concatenate
函数可能会让你使用起来比前述的函数更加方便:
axis
参数很好的控制了矩阵的纵向或是横向打印,相比较vstack
和hstack
函数显得更加方便。