切换视频源:

进程池 Pool

作者: Ryan Gao 编辑: 莫烦 2016-11-03

学习资料:

这次我们讲进程池Pool。 进程池就是我们将所要运行的东西,放到池子里,Python会自行解决多进程的问题

首先import multiprocessing和定义job()

import multiprocessing as mp

def job(x):
    return x*x

进程池 Pool() 和 map()

然后我们定义一个Pool

pool = mp.Pool()

有了池子之后,就可以让池子对应某一个函数,我们向池子里丢数据,池子就会返回函数返回的值。 Pool和之前的Process的不同点是丢向Pool的函数有返回值,而Process的没有返回值。

接下来用map()获取结果,在map()中需要放入函数和需要迭代运算的值,然后它会自动分配给CPU核,返回结果

res = pool.map(job, range(10))

让我们来运行一下

def multicore():
    pool = mp.Pool()
    res = pool.map(job, range(10))
    print(res)
    
if __name__ == '__main__':
    multicore()

运行结果: python [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

自定义核数量

我们怎么知道Pool是否真的调用了多个核呢?我们可以把迭代次数增大些,然后打开CPU负载看下CPU运行情况

打开CPU负载(Mac):活动监视器 > CPU > CPU负载(单击一下即可)

Pool默认大小是CPU的核数,我们也可以通过在Pool中传入processes参数即可自定义需要的核数量,

def multicore():
    pool = mp.Pool(processes=3) # 定义CPU核数量为3
    res = pool.map(job, range(10))
    print(res)

apply_async()

Pool除了map()外,还有可以返回结果的方式,那就是apply_async().

apply_async()中只能传递一个值,它只会放入一个核进行运算,但是传入值时要注意是可迭代的,所以在传入值后需要加逗号, 同时需要用get()方法获取返回值

def multicore():
    pool = mp.Pool() 
    res = pool.map(job, range(10))
    print(res)
    res = pool.apply_async(job, (2,))
    # 用get获得结果
    print(res.get())

运行结果;

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]  # map()
4 # apply_async()

用 apply_async() 输出多个结果

那么如何用apply_async()输出多个迭代呢?

我们在apply_async()中多传入几个值试试

res = pool.apply_async(job, (2,3,4,))

结果会报错:

TypeError: job() takes exactly 1 argument (3 given)

apply_async()只能输入一组参数。

在此我们将apply_async() 放入迭代器中,定义一个新的multi_res

multi_res = [pool.apply_async(job, (i,)) for i in range(10)]

同样在取出值时需要一个一个取出来

print([res.get() for res in multi_res])

合并代码

def multicore():
    pool = mp.Pool() 
    res = pool.map(job, range(10))
    print(res)
    res = pool.apply_async(job, (2,))
    # 用get获得结果
    print(res.get())
    # 迭代器,i=0时apply一次,i=1时apply一次等等
    multi_res = [pool.apply_async(job, (i,)) for i in range(10)]
    # 从迭代器中取出
    print([res.get() for res in multi_res])

运行结果

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] # map()
4 
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] # multi_res

可以看出在apply用迭代器的得到的结果和用map得到的结果是一样的

总结

  1. Pool默认调用是CPU的核数,传入processes参数可自定义CPU核数
  2. map() 放入迭代参数,返回多个结果
  3. apply_async()只能放入一组参数,并返回一个结果,如果想得到map()的效果需要通过迭代

降低知识传递的门槛

莫烦的对教育的态度是: 降低知识传递的门槛,不希望给"学习"设置金钱障碍。 这是我花大量业余时间贡献 免费 AI分享的原因。 通过 【赞助】 能及时让我看到你对 【莫烦态度】 的认同,我也更有理由坚持下去。

如果你当前目标是找工作或者转行AI,想接受更加丰富的教学资源、培训辅导体验,我想推荐我的朋友 七月在线 给你, 通过这个 【莫烦Python为你提供的注册链接】, 你将可以获得莫烦专门为你协商的课程优惠券。祝你找/换工作顺利~



    多进程 (Multiprocessing)