Dropout 缓解过拟合
作者: 莫烦 发布于: 2017-05-27
编辑: 学习资料:
要点¶
过拟合让人头疼, 明明训练时误差已经降得足够低, 可是测试的时候误差突然飙升. 这很有可能就是出现了过拟合现象. 强烈推荐通过这个动画的形式短时间了解什么是过拟合, 怎么解决过拟合. 下面动图就显示了我们成功缓解了过拟合现象.
做点数据¶
自己做一些伪数据, 用来模拟真实情况. 数据少, 才能凸显过拟合问题, 所以我们就做10个数据点.
搭建神经网络¶
我们在这里搭建两个神经网络, 一个没有 dropout
, 一个有 dropout
. 没有 dropout
的容易出现 过拟合, 那我们就命名为 net_overfitting
, 另一个就是 net_dropped
. torch.nn.Dropout(0.5)
这里的 0.5 指的是随机有 50% 的神经元会被关闭/丢弃.
训练¶
训练的时候, 这两个神经网络分开训练. 训练的环境都一样.
对比测试结果¶
在这个 for
循环里, 我们加上画测试图的部分. 注意在测试时, 要将网络改成 eval()
形式, 特别是 net_dropped
, net_overfitting
改不改其实无所谓. 画好图再改回 train()
模式.
所以这也就是在我 github 代码 中的每一步的意义啦.