Save & reload 保存提取 - Keras | 莫烦Python
切换视频源:

Save & reload 保存提取

作者: Alice 编辑: 莫烦 2016-10-30

学习资料:

今天学习如何保存神经网络,这样以后想要用的时候直接提取就可以。

训练模型

下面的导入数据和训练模型用的是之前讲过的回归模型的例子,今天要做的是如何保存这个模型。

import numpy as np
np.random.seed(1337)  # for reproducibility

from keras.models import Sequential
from keras.layers import Dense
from keras.models import load_model

# create some data
X = np.linspace(-1, 1, 200)
np.random.shuffle(X)    # randomize the data
Y = 0.5 * X + 2 + np.random.normal(0, 0.05, (200, ))
X_train, Y_train = X[:160], Y[:160]     # first 160 data points
X_test, Y_test = X[160:], Y[160:]       # last 40 data points
model = Sequential()
model.add(Dense(output_dim=1, input_dim=1))
model.compile(loss='mse', optimizer='sgd')
for step in range(301):
    cost = model.train_on_batch(X_train, Y_train)

保存模型

训练完模型之后,可以打印一下预测的结果,接下来就保存模型。

保存的时候只需要一行代码 model.save,再给它加一个名字就可以用 h5 的格式保存起来。

这里注意,需要已经安装了 HDF5 这个模块。

保存完模型之后,删掉它,后面可以来比较是否成功的保存。

导入模型并应用

导入保存好的模型,再执行一遍预测,与之前预测的结果比较,可以发现结果是一样的。

另外还有其他保存模型并调用的方式,第一种是只保存权重而不保存模型的结构。

第二种是用 model.to_json 保存完结构之后,然后再去加载这个json_string


降低知识传递的门槛

莫烦很常从互联网上学习知识,开源分享的人是我学习的榜样。 他们的行为也改变了我对教育的态度: 降低知识传递的门槛免费 奉献我的所学正是受这种态度的影响。 通过 【赞助莫烦】 能让我感到认同,我也更有理由坚持下去。