切换视频源:

加速爬虫: 多进程分布式

作者: 莫烦 编辑: 莫烦 2017-12-30

学习资料:

当你看到这里的时候, 说明你已经不满足于自己的爬虫速度, 你想要最求更快, 更便捷的爬虫方法. 你常常会听到用爬虫的人说分布式爬虫. 这就是为了体现便捷和效率而出现的方法. 这一节内容, 我们简单地介绍一下我使用的分布式爬虫方法, 并且用 python 的 multiprocessing 模块编写一个分布式爬虫.

1-1-00.jpg

什么是分布式爬虫

分布式爬虫主要是为了非常有效率的抓取网页, 我们的程序一般是单线程跑的, 指令也是一条条处理的, 每执行完一条指令才能跳到下一条. 那么在爬虫的世界里, 这里存在着一个问题.

如果你已经顺利地执行过了前几节的爬虫代码, 你会发现, 有时候代码运行的时间大部分都花在了下载网页上. 有时候不到一秒能下载好一张网页的 HTML, 有时候却要几十秒. 而且非要等到 HTML 下载好了以后, 才能执行网页分析等步骤. 这非常浪费时间.

如果我们能合理利用计算资源, 在下载一部分网页的时候就已经开始分析另一部分网页了. 这将会大大节省整个程序的运行时间. 又或者, 我们能同时下载多个网页, 同时分析多个网页, 这样就有种事倍功半的效用. 分布式爬虫的体系有很多种, 处理优化的问题也是多样的. 这里有一篇博客可以当做扩展阅读, 来了解当今比较流行的分布式爬虫框架.

我们的分布式爬虫

而今天我们想搭建的这一个爬虫, 就是同时下载, 同时分析的这一种类型的分布式爬虫. 虽然算不上特别优化的框架, 但是概念理解起来比较容易. 我有尝试过徒手写高级一点的分布式爬虫, 但是写起来非常麻烦. 我琢磨了一下, 打算给大家介绍的这种分布式爬虫代码也较好写, 而且效率比普通爬虫快了3.5倍. 我也特地画了张图给大家解释一下要搭建的分布式爬虫.

4-1-1.png

主要来说, 我们最开始有一个网页, 比如说是莫烦Python的首页, 然后首页中有很多 url, 我们使用多进程 (Python多进程教程) 同时开始下载这些 url, 得到这些 url 的 HTML 以后, 同时开始解析 (比如 BeautifulSoup) 网页内容. 在网页中寻找这个网站还没有爬过的链接. 最终爬完整个 莫烦 Python 网站所有页面.

有了这种思路, 我们就可以开始写代码了. 你可以在我的 Github 一次性观看全部代码.

首先 import 全部要用的模块, 并规定一个主页. 注意, 我用这份代码测试我内网的网站(速度不受外网影响) 所以使用的 base_urlhttp://127.0.0.1:4000/, 如果你要爬 莫烦Python, 你的 base_url 要是 https://mofanpy.com/ (下载速度会受外网影响).

import multiprocessing as mp
import time
from urllib.request import urlopen, urljoin
from bs4 import BeautifulSoup
import re

# base_url = "http://127.0.0.1:4000/"
base_url = 'https://mofanpy.com/'

我们定义两个功能, 一个是用来爬取网页的(crawl), 一个是解析网页的(parse). 有了前几节内容的铺垫, 你应该能一言看懂下面的代码. crawl() 用 urlopen 来打开网页, 我用的内网测试, 所以为了体现下载网页的延迟, 添加了一个 time.sleep(0.1) 的下载延迟. 返回原始的 HTML 页面, parse() 就是在这个 HTML 页面中找到需要的信息, 我们用 BeautifulSoup 找 (BeautifulSoup 教程). 返回找到的信息.

def crawl(url):
    response = urlopen(url)
    # time.sleep(0.1)             # slightly delay for downloading
    return response.read().decode()


def parse(html):
    soup = BeautifulSoup(html, 'lxml')
    urls = soup.find_all('a', {"href": re.compile('^/.+?/$')})
    title = soup.find('h1').get_text().strip()
    page_urls = set([urljoin(base_url, url['href']) for url in urls])   # 去重
    url = soup.find('meta', {'property': "og:url"})['content']
    return title, page_urls, url

网页中爬取中, 肯定会爬到重复的网址, 为了去除掉这些重复, 我们使用 python 的 set 功能. 定义两个 set, 用来搜集爬过的网页和没爬过的.

unseen = set([base_url,])
seen = set()

测试普通爬法

为了对比效果, 我们将在下面对比普通的爬虫和这种分布式的效果. 如果是普通爬虫, 我简化了一下接下来的代码, 将一些不影响的代码去除掉了, 如果你想看全部的代码, 请来到我的 Github. 我们用循环一个个 crawl unseen 里面的 url, 爬出来的 HTML 放到 parse 里面去分析得到结果. 接着就是更新 seenunseen 这两个集合了.

特别注意: 任何网站都是有一个服务器压力的, 如果你爬的过于频繁, 特别是使用多进程爬取或异步爬取, 一次性提交请求给服务器太多次, 这将可能会使得服务器瘫痪, 你可能再也看不到莫烦 Python 了. 所以为了安全起见, 我限制了爬取数量(restricted_crawl=True). 因为我测试使用的是内网 http://127.0.0.1:4000/ 所以不会有这种压力. 你在以后的爬网页中, 会经常遇到这样的爬取次数的限制 (甚至被封号). 我以前爬 github 时就被限制成一小时只能爬60页.

# DON'T OVER CRAWL THE WEBSITE OR YOU MAY NEVER VISIT AGAIN
if base_url != "http://127.0.0.1:4000/":
    restricted_crawl = True
else:
    restricted_crawl = False

while len(unseen) != 0:                 # still get some url to visit
    if restricted_crawl and len(seen) >= 20:
        break
    htmls = [crawl(url) for url in unseen]
    results = [parse(html) for html in htmls]

    seen.update(unseen)         # seen the crawled
    unseen.clear()              # nothing unseen

    for title, page_urls, url in results:
        unseen.update(page_urls - seen)     # get new url to crawl

使用这种单线程的方法, 在我的内网上面爬, 爬完整个 莫烦Python, 一共消耗 52.3秒. 接着我们把它改成多进程分布式.

测试分布式爬法

还是上一个 while 循环, 首先我们创建一个进程池(Pool). 不太懂进程池的朋友看过来. 然后我们修改得到 htmlsresults 的两句代码. 其他都不变, 只将这两个功能给并行了. 我在这里写的都是简化代码, 你可以在这里 看到完整代码.

pool = mp.Pool(4)
while len(unseen) != 0:
    # htmls = [crawl(url) for url in unseen]
    # --->
    crawl_jobs = [pool.apply_async(crawl, args=(url,)) for url in unseen]
    htmls = [j.get() for j in crawl_jobs]

    # results = [parse(html) for html in htmls]
    # --->
    parse_jobs = [pool.apply_async(parse, args=(html,)) for html in htmls]
    results = [j.get() for j in parse_jobs]

    ...

还是在内网测试, 只用了 16.3秒!! 这可比上面的单线程爬虫快了3.5倍. 而且我还不是在外网测试的. 如果在外网, 爬取一张网页的时间更长, 使用多进程会更加有效率, 节省的时间更多.

看到这里, 你一定觉得多线程是爬虫的救星. 其实不然, 要不然我们的教程为什么还能继续. 哈哈. 下一节, 我们会讲到比多进程更加厉害的一种方法. 叫做异步爬取 (asyncio 模块).

相关教程

降低知识传递的门槛

莫烦的对教育的态度是: 降低知识传递的门槛,不希望给"学习"设置金钱障碍。 这是我花大量业余时间贡献 免费 AI分享的原因。 通过 【赞助】 能及时让我看到你对 【莫烦态度】 的认同,我也更有理由坚持下去。

如果你当前目标是找工作或者转行AI,想接受更加丰富的教学资源、培训辅导体验,我想推荐我的朋友 七月在线 给你, 通过这个 【莫烦Python为你提供的注册链接】, 你将可以获得莫烦专门为你协商的课程优惠券。祝你找/换工作顺利~